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Abstract

Multi-leader-follower games arise when modeling competition between two or more
dominant firms and lead in a natural way to equilibrium problems with equilibrium
constraints (EPECs). We examine a variety of nonlinear optimization and nonlinear
complementarity formulations of EPECs. We distinguish two broad cases: problems
where the leaders can cost-differentiate and problems with price-consistent follow-
ers. We demonstrate the practical viability of our approach by solving a range of
medium-sized test problems.
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1 Introduction

Dominant firms in a market can exercise their power to manipulate the market to their
own advantage. If all firms have the same market share, then the market can be modeled
by a Nash game [23, 24], a noncooperative game in which all firms simultaneously compete
against each other. When there is a single dominant firm, however, the market must be
modeled as a Stackelberg (single-leader-follower) game [31, 20], in which the dominant
firm, the leader, maximizes its profit subject to all other firms, the followers, being in a
competitive equilibrium. Between these two extremes is the multi-leader-follower game
that has multiple dominant firms and a number of followers. Multi-leader-follower games
can be further differentiated into those in which the follower responses are constrained
to be identical for each leader and those in which the followers are allowed to respond
differently to each leader. We consider only the former, the multi-leader-identical-follower
game. Problems of this type arise, for example, in the analysis of deregulated electricity
markets [13, 4]. One formulation of multi-leader-follower games uses the novel modeling
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Solving Multi-Leader-Follower Games 2

paradigm of equilibrium problems with equilibrium constraints (EPECs). This paradigm
was introduced in [27] and further developed in [7] in the context of modeling competition
in European electricity markets. In our paper we describe practical approaches for solving
EPECs and apply these techniques to several medium-sized problems.

Optimality conditions for EPECs are studied in [21] in the context of multiobjective
optimization. Early algorithmic work on EPECs has focused on diagonalization tech-
niques such as Gauss-Jacobi and Gauss-Seidel type methods. Such methods solve a cyclic
sequence of single-leader-follower games until the decision variables of all leaders reach a
fixed point. In [32], Su proposes a sequential nonlinear complementarity problem (NCP)
approach for solving EPECs. The approach is related to the relaxation approach used
in mathematical programs with equilibrium constraints (MPECs) [29] that relaxes the
complementarity condition of each leader and drives the relaxation parameter to zero.

In this paper, we argue that EPECs should be solved by a single nonlinear optimization
problem simultaneously for all leaders. Our approach exploits the insight gained from
applying nonlinear solvers to MPECs. In particular, we derive an NCP formulation of
the EPEC based on the equivalence between the Karush-Kuhn-Tucker (KKT) conditions
of the MPEC and strong stationarity. This NCP formulation is analyzed further and
we derive equivalent MPEC and nonlinear programming (NLP) formulations. We also
introduce the notion of price consistency and show that it leads to a restricted square
NCP that can be solved by applying standard NCP solvers.

This paper is organized as follows. The next section briefly reviews recent progress in
solving Stackelberg games. Section 3 extends these ideas to multi-leader-follower games
and introduces a new equilibrium concept. We also provide various formulations and
show how equilibrium points can be computed reliably by solving nonlinear optimization
problems. Section 4 introduces an alternative price-consistent formulation of the multi-
leader-follower game that gives rise to a square complementarity problem. Section 5
explores the different formulations of equilibrium points and investigates the suitability
of nonlinear solvers.

2 Single-Leader-Follower Games

In this section we briefly review some pertinent properties of single-leader-follower games.
The Stackelberg game is played by a leader and a number of followers who compete
noncooperatively. Given a strategy x of the leader, the ¢ followers choose their strategies

such that
argmin bj(x,w;)
wi € { w20 Vi=1,....4 (2.1)
subject to  ¢;(w;) >0
where w; = (wy,...,wj_y,wj, w;,,...,wy;). For fixed x, this problem is a Nash game. If

(2.1) is convex, then the condition that the followers choose an optimal strategy can be
written as an NCP parameterized by x:

0<w; L Vybj(r,w)—Vycj(wj)z; >0 Vji=1,...¢
OSZJ' L cj(wj)ZO ijl,...,g,
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where the complementarity condition means that componentwise either the left or the
right inequality is active. By defining variables y; = (wj, ;) and functions

bz, y;) = ( Vi, bj(x,w) = Vi, c(wy)z; )

cj(w;)

and by introducing slack variables s, this NCP can be written as
(2.2)

where h(l’, y) = (hl(x7yl)7 <o JMZ(%.W))‘
Given that the followers are in equilibrium, the leader optimizes its objective f(z,y)

subject to its own set of constraints g(x) > 0 and the NCP (2.2):

minimize  f(x,y)

x>0,y,s
subject to  g(x) >0 (2.3)
h(z,y) —s=10
0<y 1L s>0.

Problem (2.3) is an MPEC. The left graph of Figure 1 shows an example of a Stackelberg
game in which one large, dominant electricity producer acts as the leader, with a number
of smaller producers acting as followers that play a Nash game with the independent
system operator (ISO).

A number of limitations arise in writing a Nash game as complementarity constraints.
If the followers’” problems are not convex, then (2.1) and (2.2) are not equivalent. In fact,
the solution set of (2.2) includes all stationary points of (2.1) and may lead the solver to
a saddle point or a local maximum. Thus, a solution to (2.3) may not correspond to a
solution to the Stackelberg game in these situations. We accept this limitation because
it is not clear at present how this situation can be avoided in practice. Toward the end
of this paper, we comment on how to interpret certain failures of the NLP approach in
terms of the original problem.

The formulation we have presented does not allow the constraints of each follower to
depend on the strategy chosen by either the leader or other followers so that standard
notions of Nash and Stackelberg games are recovered. Generalized Nash and Stackelberg
games are obtained when the constraints are allowed to depend on the choices made by
the other players. Thus, ¢(w) becomes é(x, w), and g(x) can also depend on the followers’
responses becoming g(x,w). In this case, the MPEC (2.3) becomes

minimize  f(z,y)

x>0,y,s
subject to  g(z,y) >0 (2.4)
h(z,y) —s=0
0<y L s>0,

where h is defined to take é(z,w) into account. Some of the test problems in Section 5
are derived from generalized Nash and Stackelberg games.
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Figure 1: Structure of Stackelberg games and multi-leader multi-follower games

One attractive solution approach to (2.3) or (2.4) is to replace the complementarity
condition by a nonlinear inequality, such as y7s < 0 or Y's < 0, where Y is the diagonal
matrix with y along its diagonal. This equivalent nonlinear program can then be solved by
using standard NLP solvers. Unfortunately, this NLP violates the Mangasarian-Fromovitz
constraint qualification (MFCQ) at any feasible point [29]. This failure of MFCQ implies
that the multiplier set is unbounded, the central path fails to exist, the active constraint
normals are linearly dependent, and linearizations can become inconsistent arbitrarily
close to a solution [11]. In addition, early numerical experience with this approach had
been disappointing [2]. As a consequence, solving MPECs as NLPs has been commonly
regarded as numerically unsafe.

The failure of MFCQ in the equivalent NLP can be traced to the formulation of the
complementarity constraint as Ys < 0. Consequently, algorithmic approaches have fo-
cused on avoiding this formulation. Instead, researchers have developed special-purpose
algorithms for MPECs, such as branch-and-bound methods [2], implicit nonsmooth ap-
proaches [25], piecewise SQP methods [19], and perturbation and penalization approaches
[6] analyzed in [30]. All of these techniques, however, require significantly more work than
a standard NLP approach.

Recently, researchers have shown that MPECs can be solved reliably and efficiently
[1,3,9, 11, 16, 17, 18, 28] using standard nonlinear optimization solvers by replacing the
complementarity constraint with Y's < 0. The key observation in proving convergence of
such an approach is that strong stationarity is equivalent to the KKT conditions of the
equivalent NLP. We present strong stationarity in the context of the slightly more general
MPEC (2.4) given by

minimize  f(z,y)

subject to  g(z,y) >0 (2.5)
h(l’,y) —s=0
y>0,5s>0, Ys<O0.

We will use strong stationarity to derive nonlinear formulations of EPECs. Strong sta-
tionarity is introduced in [29] and can be defined as follows.

Definition 2.1 A point (z,y,s) is called a strongly stationary point of the MPEC (2.4)
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if and only if there exist multipliers x > 0, A > 0, u, Y, o such that

vxf(xa y) - ng(l’, y))‘ - th(x7 y)ﬂ —X= 0
Vyf(z,y) = Vyg(z,y)A = Vyh(z,y)p —¢ =0

w—o=20
g(x,y) >0

hy) —s=0 26)
x,Yy,s >0

2Ty =0 and g(z,y)"\=0 and y"p =0 and sTo =0
if yi=s;=0 then v;, 0; >0

The multipliers on the simple bounds ; and o; are nonnegative only if y; = s; = 0,
as is consistent with the observation that y; > 0 implies s; = 0, and o; is therefore the
multiplier on an equality constraint whose sign is not restricted.

Fletcher et al. [11] have shown that strong stationarity is equivalent to the KKT
conditions of the equivalent NLP (2.5). That is, there exist multipliers x > 0, A > 0, p,
¥ >0,0 >0,& > 0 such that

Vo f(z,y) = Vaglz, y)A = Vih(z,y)p —x =0
Vyf(z,y) = Vyg(@,y)Ay — Vh(z,y)p — ¢+ 5§ =0
p—o+YE=0
0<g(z,y) L A=0
h(z,y) —s=0 (2.7)
0<z L x>0
O<y L =0
0<s 1 >0
0<—-Ys L £>0

One can show that the multipliers of the equivalent NLP (2.5) form a ray and that SQP
methods converge to a minimum norm multiplier corresponding to the base of the ray [11].
The aim of this paper is to demonstrate that strong stationarity can be applied within the
context of multi-leader-follower games to define equilibrium points, thus making EPECs
amenable to approaches based on nonlinear optimization or nonlinear complementarity.

We conclude this section by recalling the definition of an MPEC constraint qualifica-
tion.

Definition 2.2 The MPEC (2.4) satisfies an MPEC linear independence constraint qual-
ification (MPEC-LICQ), if the NLP (2.5) without the complementarity condition Ys <0
satisfies an LICQ).

3 Multi-Leader-Follower Games

Multi-leader-follower games arise when two or more Stackelberg players with identical
followers compete noncooperatively. The right graph of Figure 1 shows an example of a
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multi-leader-follower game in which two large electricity producers act as leaders, with
a number of smaller producers acting as followers that play a Nash game with the in-
dependent system operator. Such games can be modeled as equilibrium problems with
equilibrium constraints. The aim is to find an equilibrium point where no player can
improve the objective without degrading the objective of at least one other player. This
goal is achieved by extending strong stationarity (Definition 2.1) to equilibrium problems
with equilibrium constraints.

We let £ > 1 be the number of leaders and denote by z;, ¢ = 1,...,k, the decision
variables for leader i. The leader variables are abbreviated by z = (xy,...,x;). The
Stackelberg game played by leader ¢ gives rise to the following MPEC:

minimize fil@i,y)

subject to  g;(%;,y) >0
hzi;y) —s=0
0<y L s>0,

where &; = (2%,...,%} 1,2, %}, ..., ;). The multi-leader-follower game is defined as a
solution to the following collection of MPECs:

argmin fi(Zi,y)

z;>0,y,s
(zf,y*, s*) € { subject to  g;(i,y) >0 Vi=1,... k. (3.1)
h('@la y) — 8=
0<y L s>0

One attractive way to attack the multi-leader-follower game (3.1) is to follow the same
formalism as in the derivation of the Nash game in the previous section. Formally, we
replace each MPEC in (3.1) by its strong stationarity conditions and concatenate the
equivalent KKT conditions (2.7) for all leaders i« = 1,...,k. This approach formulates
the multi-leader-follower game as a nonlinear complementarity problem. A range of al-
ternative formulations as nonlinear programming problems can also be found. We start
by describing the derivation of NCP formulations.

3.1 NCP Formulations of Multi-Leader-Follower Games

The concatenation of the strong stationarity conditions for each leader produces the fol-
lowing NCP formulation of the multi-leader-follower game (3.1).

Vo filz,y) — Va,gi(x,y)N\i = Vi, h(z,y)p; —xi =0 Vi=1,....k (3.2a)
Vyfilxz,y) = Vygi(z,y)\i — Vyh(z,y)p; — i + 5 =0 Vi=1,...,k (3.2b)
wi—o;+Y&E=0 Vi=1,...k (3.2¢)

0<gi(z,y) L \;>0 Vi=1,... )k (3.2d)

hz,y) —s=0 (3.2¢)

0<z; L x;,>20 Vi=1,...,k (3.2f)

0<y L >0 Vi=1,...,k (3.2¢)

0<s Ll o,>0 Vi=1,....k (3.2h)

0<-Ys L &>0 Vi=1,...k (3.21)
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The multipliers y;, v, and o; can be eliminated from the model. Moreover, the multipliers
of the followers’ constraints, v;, o;, and &;, can be different for each Stackelberg player.
This formulation corresponds to a scenario in which the cost of the followers’” actions can
be different for each leader, that is the leaders cost differentiate. In contrast, in Section 4,
we discuss conditions on the structure of the game (3.1) that allow us to enforce a price-
consistent formulation in which p;, ¥;, o;, and &; are the same for every leader.

Formally, this approach to EPECs is analogous to the formulation of the Nash game
(2.1) as a complementarity problem (2.2). Unlike a Nash game, however, the MPEC (2.3)
is always nonconvex because of the presence of the complementarity constraint. Therefore,
no simple equivalence exists between the solution set of the NCP defined by (3.2) and
the solution set of the multi-leader-follower game (3.1). Moreover, this NCP is typically
not square because the equations (3.2a), (3.2b), (3.2¢), and (3.2e) cannot be uniquely
matched to the free variables z;, y, s, and p;, making it harder to solve than standard
Nash games.

In [32], (3.2) is solved by adding a smoothing parameter to the original complemen-
tarity condition, replacing (3.2i) by

—te< —-Ys L & >0,

where ¢t \, 0, and e = (1,...,1)7. In contrast, we attack (3.2) directly by exploiting the
recent advances in nonlinear solvers for MPECs.

We can simplify (3.2) by noting that the complementarity condition in (3.2i) always
holds because y and s are nonnegative. In addition, the constraint Ys < 0 can be
replaced by 0 <y 1 s > 0. This formulation has the advantage that it makes the
complementarity constraint transparent for the nonlinear solver, allowing, for example,
different techniques to deal with the complementarity condition. Thus, we can replace
the constraints (3.2g)—(3.21) by the following set of inequalities:

0<y L ¢ >0
0<s L 0,20
0<y L s2>0

§& >0

Vi=1,... k.

An alternative formulation is to replace (3.2g)—(3.2i) with the equivalent set of conditions:

0<% +s L y=>0
0<o;,+y L s>0 pVi=1,... k.
¢i70ia€i20

Another source of degeneracy is the fact that the multipliers form a ray and are therefore
not unique. This redundancy can be removed by adding a complementarity constraint
that forces the multipliers of each Stackelberg game to be basic (and therefore unique),
such as

0<vi+o L &=>0.

Combining these observations, we arrive at the following NCP formulation of a multi-



Solving Multi-Leader-Follower Games 8

leader-follower game.

Vo filx,y) — Va,gi(x,y)N\i = Vi, h(z, ) —xi =0 Vi=1,... k (3.3a)
Vyfilxz,y) = Vygi(z,y)\i — Vyh(z,y)p; — i + 5§ =0 Vi=1,...,k (3.3b)
wi—o;+Y&E=0 Vi=1,...k (3.3¢)

0<gi(z,y) L N, >0 Vi=1,... )k (3.3d)

hz,y) —s=0 (3.3¢)

0<z L ;>0 Vi=1,...k (3.3)

0<yi+s Ly>0 Vi=1,....k (3.3g)

0<o;+y L s>0 Vi=1,...,k (3.3h)

0<ditor L &>0 Vi=1,.. . .k (3.30)

This formulation is not a square NCP because y and s are matched with multiple inequal-
ities in (3.3g) and (3.3h), respectively.

The derivation in this section motivates the following definition. A similar definition
regarding (3.2) can be found in [32].

Definition 3.1 A solution of (3.1) is called an equilibrium point of the multi-leader-
follower game. A solution (x*,y*,s*, x*, N\, u*,¥*, 0%, &) of (3.2) or (3.3) is called a
strongly stationary point of the multi-leader-follower game (3.1).

The following proposition shows that equilibrium points are strongly stationary pro-

vided an MPEC-LIC(Q holds.

Proposition 3.1 If (z*,y*, s*) is an equilibrium point of (3.1) and if every MPEC of
(8.1) satisfies an MPEC-LICQ), then there exist multipliers (x*, \*, u*,¥*, o*, &%) such
that (3.2) and (3.3) hold.

Proof. The statement follows directly from [29] and can also be found in [32]. If MPEC-
LICQ holds, then there exist multipliers for every leader’s Stackelberg game, and (3.2)
and (3.3) follow. O

We note that both (3.2) and (3.3) are degenerate in the sense that the constraints
violate any constraint qualification because of the presence of Ys < 0. In addition, the
Jacobian is singular whenever any component of both y and s is zero. This fact makes
it difficult to tackle (3.3) with standard NCP solvers. In the next section we derive more
robust formulations of the NCP that resolve the redundancy in (3.2) and can be solved
by using standard nonlinear optimization techniques.



Solving Multi-Leader-Follower Games 9

3.2 NLP Formulations of Multi-Leader-Follower Games

The redundancy inherent in the NCP formulation (3.2) of the previous section can be ex-
ploited to derive nonlinear programming formulations of the multi-leader-follower game.
This section introduces two other formulations of the NCP (3.2). The first formulation is
based on the idea of forcing the EPEC to identify the basic or minimal multiplier for each
Stackelberg player. This formulation results in an MPEC. The second formulation penal-
izes the complementarity constraints and results in a well-behaved nonlinear optimization
problem.

One difficulty with the NCP (3.2) is the existence of an infinite number of multipliers.
Since the multipliers form a ray, however, there exists a minimum norm multiplier [11].
The first reformulation aims to find this particular multiplier by minimizing the ¢;-norm
of the multiplier on the complementarity constraint, giving rise to the following MPEC:

k

. T

Jpigimize, ) ¢'&

subject to Vg, fi(z,y) — Va,gi(x, ) N\i — Vi, h(z,y)p; — x; =0 Vi=1,...,k
vyfi<xvy) - Vygz'(x,y)&- - Vyh(x,y)m — Y, + 56 =0 Vi=1,...,k
pi—o; +YEg =0 Vi=1,... .k
0<gi(z,y) L N >0 Vi=1,...,k
h(z,y) —s=0
0<y L ¢,>0 Vi=1,...,k
0<s L ;>0 Vi=1,...,k
0<y L s>0
& >0 Vi=1,... .k

(3.4)
This reformulation violates standard constraint qualifications because it is an MPEC.
However, recent developments show that MPECs like (3.4) can be solved reliably and
efficiently by using standard NLP solvers [1, 10, 11]. We could also use the bounded
multiplier reformulations of the complementarity constraints in the MPEC.

The next formulation aims to avoid this difficulty by minimizing the complementarity
constraints. This formulation of the multi-leader-follower game follows an idea of Moré
[22] and minimizes the complementarity conditions in (3.2d) and (3.2f)—(3.31). After
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introducing slacks t; to g;(x,y) > 0, one can write this problem as follows:

k

T,Y V8
subject to infi(x,) Ve gi(x,y)N\i — Ve h(z,y)pu; — x; =0 Vi=1,...,k
Vi, filx,y) = Vygi(z,9) A\, — Vih(x,y)p; — 0, + 5§ =0 Vi=1,... )k
wi—o; +Y&E =0 Vi=1,...,k
gi(z,y) =t; Vi=1,...,k
hz,y) =
y=>0,5s>0
2 >0, t; > 0 Vi=1,... k.
(3.5)

In this problem, the complementarity conditions have been moved into the objective by a
penalty approach, and the remaining constraints are well-behaved. A penalty parameter
of one is always adequate because the multi-leader-follower game has no objective func-
tion. We could also use the bounded multiplier reformulations of the complementarity
constraints when deriving an NLP.

The following theorem summarizes the properties of the formulations introduced in
the section.

Theorem 3.1 If (z*,y*, s* t*, x*, \*, u*,¥*,0%,£%) is a local solution of (3.4), then it
follows that (z*,y*,s*) is a strongly stationary point of the multi-leader-follower game
(3.1). If (x*,y*, s, t5, x*, X", ", ¢*, 0%, €%) is a local solution of (3.5) with Cpe,, = 0, then
it follows that (x*,y*,s*) is a strongly stationary point of the multi-leader-follower game

(3.1).

Proof. The proof follows directly from the developments above. a

4 Price-Consistent Formulations

For generalized Nash games, the constraints ¢;(x, w;) are typically identical functions. In
this case, the multi-leader-follower game can be reduced to have only one copy of the NCP
constraint (2.2). The first-order conditions for the generalized Nash game would be non-
square in this case, however, because some multipliers cannot be matched to constraints.
If we further assume the multipliers on identical joint constraints are the same, that is,
the shadow prices are set by an independent entity that cannot price discriminate, then
we need only one multiplier z, instead of one for each follower. We refer to problems
having both modifications as being price consistent. Price-consistent generalized Nash
games give rise to square complementarity problems and can be solved with standard
NCP solvers.
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The ideal generalized Nash game parameterized by x that we consider is

argmin bi(z,w,)
w; € w; 20 Vi=1,...,¢, (4.1)
subject to  c(z,w;) >0
where w; = (wy,...,wj_j,wj,wi,,,...,w;) as before and where we assume c;(z,w;) =

c(x,w;) for all j. Price consistency is achieved by removing the joint constraints by
introducing another set of players that choose the multipliers on the constraints and
modifying the objective function for each original player. We refer to the players as the
independent system operators. The standard Nash game parameterized by x after these
changes are made is given by

wi € {argmin bj(z,w;) — c(x,ﬁ)j)Tz;f} Vi=1,...,¢,

w; >0

%

(4.2)
i€ {argmin c(x,w*)Tz]} Vi=1,...,¢

z;>0

The first-order conditions of (4.1) and (4.2) are identical. The independent system oper-
ators are allowed to discriminate in the price quoted to each player.

The price-consistent assumption states that the independent system operators must
select a set of consistent prices for all original players, producing the restricted problem

w; € {argrfgn bj(z,w;) — c(x,wj)Tz*} Vi=1,....¢,

(4.3)
¥ € {argmin c(z, w*)Tz} :

z>0
which contains only one set of multipliers and constraints; all other multipliers and con-
straints have been removed. A solution to the restricted problem is a critical point for
the original problem.

A multi-leader-follower game is a generalized Nash game with shared decision variables
because the follower needs to make an identical decision for each leader. These shared
decision variables cause complications when demanding price consistency. We make the
following assumptions on the structure of the multi-leader-follower game that will enable
us to apply the price consistent restriction:

[A1] Leader i’s general constraints are independent of the followers’ decision variables;
in other words, leader ¢’s general constraints are of the form g¢;(x;) > 0.

[A2] Leader i’s objective function is separable in z and y and is of the form f;(z,y) =

filz) + f(y).

Assumption [A2] enables us to add a third player that chooses values for the shared
decision variables. This assumption can be relaxed to V,fi(z,y) = V, f;(x,y) for all i
and j.
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Therefore, our idealized prototype for the multi-leader-follower game is of the form

argmin fil@:) + f(y)

z;>0,y,s
(z,y%,5") € { subject to gi(w;) >0 Vi=1,... k.
h('%la y) —s5=0
0<y L s>0

As before, we remove the joint NCP constraints by introducing an independent system
operator and apply the price-consistent restriction to produce the following game.

argmin fil@) + f(y)

z;2>0,y,s

~ T * .
(xf,y*,s*) € = (h(Zs,y) —8)" 1 Vi=1,...,k,
_yTw* o STO'* + STY£*
subject to  g;(z;) >0

(W p*, 0%, &) € { ﬁ)gnifféo (M, y") = ") '+ (y) v+ (s*) o — (s7)TY*¢ }
R (4.4)

This modification does not eliminate the shared decision variables. We now exploit the
separability assumption on the objective functions, [A2], to produce an alternative game
that contains an independent system operator and an auxiliary player having control over
the shared decision variables.
{ argmin fi(@:) = (W&, y7) — S*>T w* } ,
T; € ;>0 Vi=1,...,k,

subject to  g;(z;) >0

(y*.s*) € {argmin Fly) = (W y) —s) w —y"y* —sTo" + sTYﬁ*} :

Y,s

e e € { e (h(“"*w*)—S*)TMJr(y*)Ter(s*)Ta—(s*)TY*€}.
w,%20,620,620
(4.5)

Problems (4.4) and (4.5) are equivalent because they have the same set of solutions; we
have removed only redundant equations. However, the first-order conditions for the first
problem are not square, while the latter produces a square complementarity problem.
Applying the inverse operation to ¢, o, and £ leads to the equivalent formulation:
. N A * A\ %
e { armgirz%ln fi(@i) = (W@, y7) — )" p } Vi1 .. .k
subject to  gi(z;) >0

Y,s

subjectto 0<y L s>0

W) € { argmin  f(y) — (h(z*,y) —s)" p* } (4.6)

woe {argmin (h(z*,y*) — s)"p } :

I
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This development motivates the following definition.

Definition 4.1 The game (4.6) is called a price-consistent multi-leader-follower game.

Next, we derive the NCP formulation of the price-consistent multi-leader-follower game
(4.6) as

Ve fi(x) = Va,gi(zi) \i — Ve, h(z,y)p — xi = 0 Vi=1,....k
Vyf(y) = Vyh(z,y)p — 1+ SE=0
p—o+YE=0
0<gi(r;) L M>0 Vi=1,...,k
h(z,y) —s=0 (4.7)
0<z L x>0 Vi=1,... .k
0<y L¢Y>0

0<s L o>0
0<-Ys L £>0

Other versions of this NCP can also be posed. For example, the bounded multiplier
version would be
Vo, filz) — angi(aji))\i = Vo h(@, y)p —xi =0 Vi=1,...,k
Vyf(y) = Vyh(z,y)u — b+ SE=0

p—o+YE=0
0<gi(z;) L N\>0 Vi=1,...,k
h(z,y) —s=0 (4.8)
0<z L ;>0 Vi=1,... k

0<v+s L y>0
0<o+y L s>0
0<Y+o L £>0

Both problems are square NCPs without side constraints. Moreover, ¥ and ¢ can be
eliminated to produce a reduced model.

By making a further simplifying assumption on the underlying model, we can establish
an interesting relationship between price consistency and a multiobjective optimization
problem. We start by defining complete separability.

Definition 4.2 We say that the multi-leader-follower game (3.1) is completely separable
if the constraints are separable, that is, gi(%:,y) = gi(z:), and the objective is separable,
that is, fi(Z:,y) = fi(x;) + f(y) for every leader i =1,... k.

The following proposition relates price-consistent multi-leader-follower games to a
standard MPEC.
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Proposition 4.1 Assume that the multi-leader-follower game is completely separable.
Then it follows that the first-order conditions (4.7) of the game (4.6) are equivalent to the
strong stationarity conditions of the following MPEC:

k
minimize Z filxs) + f(y)
i=1

x>0
subject to  g;(z;) >0 Vi=1,...,k (4.9)
h(‘ra y) —s5=0
0<y L s>0.

Proof. The proof follows by comparing the strong-stationarity conditions of the MPEC
(4.9) with the first-order conditions of (4.7). O

Problem (4.9) minimizes the collective losses for the leaders and can be interpreted
as finding a particular solution to a multiobjective optimization problem by minimizing
a convex combination of all leaders’ objectives. This observation is readily extended to
multi-leader-follower games in which the leaders have common identical constraints of the
form c(x,y) > 0.

As a consequence, existence results can be derived for completely separable EPECs by
showing the existence of a solution to the price-restricted MPEC (4.9). This observation
provides a starting point for deriving existence results for certain classes of EPECs.

By introducing the price-consistent restriction, we produce a model that may be easier
to solve than the original. Because price consistency is a restriction, any solution to the
restricted model is a solution to the unrestricted version. However, the restricted model
may not have a solution, while the unrestricted model may have a solution as the following
example illustrates.

The example, a generalized Nash game, shows the different possible results for the
price-consistent formulation:

minimize x% + axixe subject to x; + x5 = ¢
1

minimize 3 + brizo subject to 1 + x5 = c,
T2

where a, b, and ¢ are parameters. One can show that every point (x;,¢ — x1) is an
equilibrium point of the multi-leader-follower game (3.1). However, the price-consistent
game can have zero, one, or an infinite number of solutions. In particular, the price-
consistent game has the following:

1. A unique equilibrium if a 4+ b # 4.
2. An infinite number of equilibria (x1, ¢ — x1,2¢) when a = b = 2.

3. An infinite number of equilibria (x1,c¢ — 1,221 — axy) when a +b =4, a # b, and
c=0.

4. No equilibrium when a +b =4, a # b, and ¢ # 0.
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In the last case, one player would make an infinite profit, while the other an infinite loss as
x1 goes to infinity and xs goes to minus infinity. Moreover, if a = b, the price-consistent
game is computing a first-order critical point for the single optimization problem:

minimize x% + J}% + axize subject to x; + x5 = c.
x1,T2

This problem is unbounded below but has the unique critical point (§,5,c + ) corre-

sponding to a maximizer when a > 2, an infinite number of solutions (z1, ¢ — x1, 2¢) when
a = 2, and a unique solution (§, 5,c+ %) when a < 2.

5 Numerical Experience

This section provides some preliminary numerical experience in solving medium-scale
EPECs with up to a few hundred variables. The numerical solution of EPECs is a novel
area: there are no established test problem libraries and few numerical studies. We begin
by describing the test problems and then provide a detailed comparison of our formulations
with the diagonalization approach and the approach of [32]. All problems are available
online at http://www-unix.mcs.anl.gov/ " leyffer/MacEPEC/.

5.1 Description of Test Problems

The test problems fall into three broad classes: randomly generated problems, academic
test problems, and a more realistic model that arose out of a case study of the interaction
of electric power and NO,, allowance markets in the eastern United States [4].

The AMPL models of all test problems identify the NCPs (3.2) and (3.3), the MPEC
(3.4), and the NLP (3.5) formulations as *-NCP.mod, *-NCPa.mod, *-MPEC.mod, and
*-NLP .mod, respectively. The price-consistent models (4.7) and (4.8) are labeled *-PC.mod
and *-PCa.mod. The diagonalization techniques are also implemented in AMPL: the Gauss-
Jacobi iteration is identified by *-GJ.mod and the Gauss-Seidel iteration by *-GS.mod.
Finally, the NCP smoothing technique of [32] is identified by the addition of *-NCPt .mod.

5.1.1 Randomly Generated EPECSs

Randomly generated test problems are usually a poor substitute for numerical experi-
ments. However, the fact that solving EPECs is a relatively new area means there are few
realistic test problems. Thus, in order to demonstrate the efficiency of our approach on
medium-sized problems, we decided to include results on randomly generated problems.
We have written a random EPEC generator in matlab that generates a random EPEC
instance and writes the data to an AMPL file. Each leader is a quadratic program with equi-
librium constraints and follows ideas from [12]. We note that [32] has a more sophisticated
generator that follows ideas from [14]. Each leader i = 1,...,k has variables x; € R",
where we assume for simplicity that all leaders have the same number of variables. Leader
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1’s problem is the QPEC

minimize 7Gx + gl @
z;>0,y,s
subject to  b; — A;z; > 0
Nz+My+q=s
0<y L s>0,

where the data for leader i is given by the following randomly generated vectors and
matrices: g;, the objective gradient; GG;, the objective Hessian, a positive definite nk x nk
matrix; A;, the p X n constraint matrix on the controls z;; and b;, a random vector for
which b; — A;e > 0. The data for the follower is given by N, an m x nk matrix; M, an
m x m diagonally dominant matrix; and the vector g. These problems satisfy Assumptions
[A1] and [A2], so a price-consistent version can be generated, but the constraints are not
completely separable.

Table 1: Details of Randomly Generated Datasets

Datasets
Parameter 01-10 11-20 21-30
Number of leaders, [ 2 2 4
Number of leader constraints, p 4 8 8
Number of follower variables, m 16 32 32
Number of leader variables, n 8 16 16
Coeflicient range of A; (—4,4] [—4,4] [-4.4]
Coefficient range of N 0,8 10,8  [0,8]
Coefficient range of b 0,8 10,8 [0,8]
Coefficient range of g; [—6,6] [-6,6] [—6,6]
Coeflicient range of ¢ [—4,4] [-4,4] [-4,4]
Density of G 0.2 0.2 0.05
Density of A; 0.4 0.4 0.2
Density of N 0.2 0.2 0.1
Density of M 0.2 0.2 0.1

The data is generated randomly from a uniform (0, 1) distribution and is scaled and
shifted to lie in a user-defined interval. The generated problems are sparse so that large-
scale EPECs can be generated and solved. The AMPL model files are EPEC-*.mod. We
have generated three datasets, each containing ten instances. The characteristics of each
dataset is shown in Table 1. Note that the data is deliberately output in single precision
because, in our experience, this heuristic usually increases degeneracy.

5.1.2 Academic Test Problems

ex-001 is a small EPEC having an equilibrium point. Assumption [A2] is satisfied by
this problem, so price-consistent formulations exist. The AMPL models are ex-001-*.mod.

example-4 is a small EPEC from [27] similar to ex-001, but designed to illustrate
a situation where each Stackelberg game has a solution but no solution exists for the
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500 kV transmission lines

Figure 2: Network Topology of electric-3.dat

multi-leader-follower game. In particular, this problem is infeasible. Moreover, it violates
Assumption [A2], so there is no square price-consistent model. The AMPL models are
ex-4-*.mod.

outrata3 is an EPEC generated from the outrata3*.mod MPEC models [15, 26]. The
control variables from all leaders enter the lower-level problem by averaging over the
leaders. This trick ensures that the EPEC does not separate into individual MPECs.
This problem has no solution and illustrates the behavior of the solvers when tackling a
problem without solution. All Stackelberg players have the same constraints but different
objective functions, so the problem violates Assumption [A2]. The AMPL models are
outrata3-*.mod.

outratad4 is derived from outrata3 so that the objective functions satisfy Assumption
[A2]. A price-consistent solution to this model exists. The AMPL models are contained in
outrata4-*.mod.

5.1.3  FElectricity Market Models

This model is an electric power market example from [27]. It has two electricity firms
(leaders) competing in a market. There is an arbitrager (follower) that exploits the price
differential between regions and an independent system operator (ISO). However, unlike
the formulation in [27], we enforce the response of the followers to be identical for all
leaders.

Each leader maximizes profit subject to capacity constraints, the arbitrager’s optimal-
ity conditions, and a market clearing condition. This optimization problem is an MPEC.
The competition between leaders gives rise to a complementarity problem obtained by
writing down the strong-stationariy conditions for each leader, the ISO’s optimality con-
ditions, and the market clearing condition.

The models are denoted by electric-*.mod. There are three data instances. The
first, electric-1.dat is the small 3-node example from [27]. This model is infeasible
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because we enforce the response of the followers to be identical for all leaders. The next
problem, electric-2.dat, is another small 3-node example that has a solution. The
data for electric-3.dat is a larger 14-node example derived from real data of the PJM
model [4]. The network of electric-3.dat is shown in Figure 2. The resulting multi-
leader-follower game has two Stackelberg players. The 14-node example results in a game
with approximately 150 constraints and 160 variables; the resulting NCP formulation
has approximately 700 variables and constraints, making this the largest EPEC solved
to date. There exists no price-consistent formulation for these problems because the
objective functions of the leaders violate Assumption [A2].

5.2 Comparison of EPEC Solution Approaches

The different formulations give rise to problems of differing size, which are summarized in
Tables 2 and 3. Each triple in these tables shows the number of variables, the number of
constraints, and the number of complementarity conditions after AMPL’s presolve, which
may eliminate variables and constraints. The benefit of the diagonalization techniques
is that they do not require gradients to be computed, a process that is potentially error
prone. In addition, the resulting problems are much smaller. On the other hand, each
sweep of a diagonalization technique solves &k MPECs.

Table 2: Test Problem Sizes for Different Formulations

Formulation

Problem NCP NCPa MPEC NLP

ex-001 12/ 14/ 6 14/ 16/ 6| 14/ 16/ 6| 12/ §/-
example-4 14/ 16/ 8 16/ 18/ 8| 15/ 16/ 7| 16/ 8/-
outratad 76/100/ 52 76/ 100/ 52 | 80/ 92/ 40| 84/ 52/-
outrata4 80/104/ 52 80/ 104/ 52 | 80/ 92/ 36| 84/ 52/-
electric-1 153/180/110 | 228/ 255/110 | 165/168/ 86 | 225/117/-
electric-2 157/182/114 | 232/ 257/114 | 169/170/ 90 | 229/118/-
electric-3 734/806/560 | 1022/1094/560 | 806/806/488 | 990/502 /-
random-[01-10] | 193/199/ 76 | 204/ 231/ 97 | 193/199/ 76 | 208/120/-
random-[11-20] | 375/379/137 | 393/ 443/183 | 375/379/137 | 416/240/-
random-[21-30] | 567/494/112 | 592/ 642/235 | 567/494/112 | 750/472/-

We use £filterMPEC [9], a sequential quadratic programming (SQP) method adapted
to solving MPECs to solve the AMPL models *-MPEC.mod, *-NCP.mod, *-NCPa.mod and
*-NLP.mod. In addition, we use the NCP solver PATH [5, 8], a generalized Newton method
that solves a linear complementarity problem to compute the direction, for the price-
consistent models. We also experimented with using PATH to solve the other NCP for-
mulations, but our experience with these nonsquare and degenerate NCPs was rather
disappointing.

Table 4 provides a comparison between the different solution approaches or EPECs.
For the NCP/MPEC/NLP formulations of Section 3 we report the number of major
(SQP) iterations. For the price-consistent NCP formulations of Section 4 we count the
number of major iterations (roughly equivalent to an SQP iteration). For the sequential
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Table 3: Test Problem Sizes for Different Formulations
Formulation

Problem NCP(t) PC PCa GJ/GS

ex-001 12/ 14/ 6 8/ 8/ 3 8/ 8/ 3 3/ 2/ 1
example-4 14/ 16/ 8 n/a n/a 4/ 3/ 2
outrata3 76/100/ 52 n/a n/a 8/ 7/ 4
outratad 80/104/ 52 | 28/ 28/ 16| 28/ 28/ 16| &/ 7/ 4
electric-1 153/146/ 74 n/a n/a 42/ 33/12
electric-2 157/148/ 78 n/a n/a 45/ 34/12
electric-3 734/664/416 n/a n/a 230/184/72
random-[01-10] | 187/219/107 | 136/136/ 72 | 136/136/ 72 | 20/ 19/13
random-[11-20] | 371/435/211 | 272/272/144 | 272/272/144 | 55/ 39/23
random-[21-30] | 639/824/375 | 352/352/192 | 352/352/192 | 70/ 31/ 6

NCP approach we report the total number of major (SQP) iterations. Finally, for the
diagonalization methods we sum the average number of major iterations to solve each
MPEC during the Gauss-Jacobi or Gauss-Seidel process. We believe this sum provides an
accurate picture of the relative performance of the diagonalization methods, which solve
smaller (single leader) subproblems. The iteration counts for the randomly generated
EPECs are averaged over the ten problem instances. Comparing CPU times would have
been problematic, because some of the algorithms are implemented as AMPL scripts,
which run significantly slower than Fortran or C.

The column headers in Table 4 refer to the problem name and the solution ap-
proach, where NCP, NCPa, MPEC, and NLP refer to formulations (3.2), (3.3), (3.4),
and (3.5), respectively; PC and PCa refer to the price-consistent formulations (4.7) and
(4.8); NCP(t) refers to the approach in [32] with the standard sequence of smoothing
parameters ¢t = 1,107%,... 1078 (except that we may terminate early if the solution is
complementary); and GJ and GS refer to the Gauss-Jacobi and Gauss-Seidel method,
respectively.

Table 4: Comparison of Iteration Counts for EPEC Methods

Solution Methods
Problem NCP | NCPa | MPEC | NLP | NCP(t) GJ GS | PC | PCa
ex-001 1 3 1 1 19 3.5 3 2 2
example-4 7l | 16[]] 10[1] | 35[1] 80[I] | 29.5[S] | 28[S] | n/a | n/a
outrata3 o8[1] | 22(1] | 221 | 41[| 129[]| FAIL | 15.75 | n/a| n/a
outrata4 14 33 81 10 52 | 30.25 | 10.5 8 7
electric-1 43[1] | 56[1] 59[1] | 112[1] 225[1) | FAIL | 3.5[S] | n/a | n/a
electric-2 oI | 12[I] 15 17 37 91.5 | 32.0| n/a| n/a
electric-3 20 28 78 107 28 1.0 1.0 | n/a| n/a
random[01-10] | 113.8 31.3 13.0 2.1 642.2 22.7 | 138 | 84| 8.2
random[11-20] | 96.2 51.5 16.4 8.8 712.8 60.4 | 34.25 | 11.3 | 9.2
random[21-30] | 17.5 21.1 17.1 3.8 184.7 17.3 1 10.95 | 10.1 | 8.3
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We start by commenting on the ability of the formulation to detect infeasible problem
instances. Convergence to locally infeasible points is indicated by [I] in Table 4. We note,
that for example-4-* outrata3, and electric-1, the NLP/NCP approaches success-
fully detect infeasibility. On the other hand, the diagonalization techniques converge to
spurious stationary points (indicated by [S]), such as C- or M-stationary points, where
one or both players have trivial descent directions. Thus, even though Gauss-Seidel and
Gauss-Jacobi converge, the result is misleading because it does not correspond to a solu-
tion. This result is not surprising because the underlying MPEC solver is not guaranteed
to converge to B-stationary points. Currently, no MPEC solver guarantees B-stationarity
under reasonable assumptions.

In our view, one of the advantages of the NLP/NCP approach is its ability to identify
infeasible problem instances. However, this process is not always guaranteed to be global,
as electric-2 indicates, where both NCP and NCPa erroneously conclude that the
problem is infeasible.

Regarding the performance of the different solvers and formulations, there appears to
be no clear overall winner, though the NLP approach is often the fastest. In particular,
for the randomly generated problems, the NLP solver can be orders of magnitude faster
than the other approaches.

We also note that the price-consistent formulations are very competitive when they
exist and have a solution. This result indicates that more research is needed to identify
robust formulations and solution tools for EPECs. A related open question concerns the
“correct” formulation and presolve for NCPs. A bad formulation can often hide structure
such as skew-symmetry that PATH can exploit during the solution.

When we compare the direct NCP approach (3.3) with the sequential NCP(t) ap-
proach, we observe that there is no benefit in smoothing the NCP formulation. The direct
approach is typically an order of magnitude faster than the sequential approach. Contrary
to intuition, the sequential NCP approach does not benefit from warm starts: each NCP
takes a similar number of iterations as ¢ is reduced. This observation is consistent with
the situation in MPECs, where SQP methods are much faster than sequential relaxation
approaches that solve one NLP per iteration for a decreasing sequence of regularization
parameters. In our view, the only way in which the relaxation approach makes sense is
if it is used in conjunction with inexact solves, such as in the context of interior-point

methods [16, 28].

6 Conclusions

We have presented two novel approaches for solving multi-leader-follower games or EPECs.
The first approach is based on the strong-stationarity conditions of each leader, and we
derive a family of NCP, NLP, and MPEC formulations. The second approach to multi-
leader-follower games imposes an additional restriction, called price consistency, that re-
sults in a square nonlinear complementarity problem. Both approaches allow the use of
standard nonlinear optimization software to be extended to EPECs. In both approaches,
also, the EPEC is solved by a single optimization problem, unlike traditional approaches
that solve a sequence of related optimization problems.

We provide some preliminary numerical results demonstrating that our new approaches
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are competitive with existing methods in terms of both robustness and efficiency. In
particular, the new approaches allow us to provide an indication when the multi-leader-
follower game has no solution. In addition, the new approaches are shown to be more
efficient than traditional diagonalization techniques.

A number of important open research questions remain. For example, all solution
techniques for EPEC rely on efficient and robust MPEC solvers. To our knowledge, how-
ever, no MPEC solver can guarantee convergence to stationary points under reasonable
conditions. Another open question is how to formulate and presolve NCPs, MPECs,
and EPECs so that the solvers can take advantage of underlying structure such as skew
symmetry.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

[1] M. Anitescu. On solving mathematical programs with complementarity constraints
as nonlinear programs. Preprint ANL/MCS-P864-1200, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, 2000.

[2] J. F. Bard. Convex two-level optimization. Mathematical Programming, 40(1):15-27,
1988.

[3] H. Benson, A. Sen, D. F. Shanno, and R. V. D. Vanderbei. Interior-point algo-
rithms, penalty methods and equilibrium problems. Technical Report ORFE-03-02,
Princeton University, Operations Research and Financial Engineering, October 2003.

[4] Y. Chen, B.F. Hobbs, S. Leyffer, and T.S. Munson. Leader-follower equilibria for
electric power and NO, allowances markets. Technical Report ANL/MCS-P1191-
0804, Argonne National Laboratory, Mathematics and Computer Science Division,
August 2004.

[5] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabilization
scheme for mixed complementarity problems. Optimization Methods and Software,
5:123-156, 1995.

[6] S. P. Dirkse, M. C. Ferris, and A. Meeraus. Mathematical programs with equilib-
rium constraints: Automatic reformulation and solution via constraint optimization.
Technical Report NA-02/11, Oxford University Computing Laboratory, July 2002.

[7] A. Ehrenmann and K. Neuhoff. A comparison of electricity market design in net-
works. Cambridge working papers in economics, Department of Applied Economics,
University of Cambridge, UK, 2004.



Solving Multi-Leader-Follower Games 22

8]

[9]

[10]

[15]

[16]

[19]

[20]

M. C. Ferris and T. S. Munson. Complementarity problems in GAMS and the PATH
solver. Journal of Economic Dynamics and Control, 24:165-188, 2000.

R. Fletcher and S. Leyffer. Numerical experience with solving MPECs as NLPs. Nu-

merical Analysis Report NA /210, Department of Mathematics, University of Dundee,
Dundee, UK, 2002.

R. Fletcher and S. Leyffer. Solving mathematical program with complementarity
constraints as nonlinear programs. Optimization Methods and Software, 19(1):15-40,
2004.

R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes. Local convergence of SQP methods
for mathematical programs with equilibrium constraints. Numerical Analysis Report
NA /209, Department of Mathematics, University of Dundee, Dundee, UK, May 2002.

M. Fukushima, Z.-Q. Luo, and J.-S. Pang. A globally convergent sequential quadratic
programming algorithm for mathematical programs with linear complementarity con-
straints. Computational Optimization and Applications, 10(1):5-34, 1998.

B. F. Hobbs, C. B. Metzler, and J.-S. Pang. Strategic gaming analysis for elec-
tric power systems: An mpec approach. [EEE Transactions on Power Systems,
15(2):638-645, 2000.

H. Jiang and D. Ralph. Documentation for QPECgen - A QPEC Generator. Uni-
versity of Melbourne, Department of Mathematics, February 1998.

S. Leyffer. MacMPEC: AMPL collection of MPECs. Webpage,
www.mcs.anl.gov/ leyffer/MacMPEC/, 2000.

S. Leyffer, G. Lopez-Calva, and J. Nocedal. Interior methods for mathematical pro-
grams with complementarity constraints. Technical Report Preprint ANL/MCS-
P1211-1204, Mathematics and Computer Science Division, Argonne National Labo-
ratory, Argonne, IL, 2004.

X. Liu, G. Perakis, and J. Sun. A robust SQP method for mathematical programs
with linear complementarity constraints. Technical report, Department of Decision
Sciences, National University of Singapore, 2003.

X. Liu and J. Sun. Generalized stationary points and an interior point method for

mathematical programs with equilibrium constraints. Mathematical Programming B,
101(1):231-261, 2004.

Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical Programs with Equilibrium Con-
straints. Cambridge University Press, Cambridge, UK, 1996.

Z.-Q. Luo, J.-S. Pang, and D. Ralph. Piecewise sequential quadratic programming for
mathematical programs with nonlinear complementarity constraints. In A. Migdalas
and P. Pardalos, editors, Multilevel Optimization: Algorithms, Complexity and Ap-
plications, pages 209-230. Kluwer Academic, Dordrecht, 1998.



Solving Multi-Leader-Follower Games 23

[21]

[22]

[23]

B. Mordukhovich. Equilibrium problems with equilibrium constraints via multiob-
jective optimization. Optimization Methods and Software, 19:479-492, 2004.

J. J. Moré. Global methods for nonlinear complementarity problems. Preprint MCS-
P429-0494, Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne, IL, April 1994.

J. F. Nash. Equilibrium points in N-person games. Proceedings of the National
Academy of Sciences, 36:48-49, 1950.

J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286-295, 1951.

J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization Problems
with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, 1998.

J. V. Outrata. On optimization problems with variational inequality constraints.
SIAM Journal on Optimization, 4(2):340-357, 1994.

J.-S. Pang and M. Fukushima. Quasi-variational inequalities, generalized nash equi-
libria, and multi-leader-follower games. Technical report, The Johns Hopkins Uni-
versity, Baltimore, USA, October 2002.

A. Raghunathan and L. T. Biegler. Barrier methods for mathematical programs with
complementarity constraints (MPCCs). Technical report, Carnegie Mellon Univer-
sity, Department of Chemical Engineering, Pittsburgh, PA, December 2002.

H. Scheel and S. Scholtes. Mathematical program with complementarity constraints:
Stationarity, optimality and sensitivity. Mathematics of Operations Research, 25:1—
22, 2000.

S. Scholtes. Convergence properties of regularization schemes for mathematical pro-
grams with complementarity constraints. SIAM Journal on Optimization, 11(4):918-
936, 2001.

H. Van Stackelberg. The Theory of Market Economy. Oxford University Press, 1952.

Che-Lin Su. A sequential NCP algorithm for solving equlibrium problems with equi-
librium constraints. Technical report, Department of Management Science and En-
gineering, Stanford University, 2004.

The submitted manuscript has been created by the University of Chicago as Operator
of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38
with the U.S. Department of Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.




